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Highlights 

 A collection of chemometrics methods such as MLR, FA-MLR, PCR, GA-PLS to make 

relations between structural characteristics and NK1R antagonism/SERT inhibitory of 

novel phenyl piperidine derivatives  

 an in silico-screening study to introduce new potent lead compounds based on new 

structural patterns 

 Molecular docking studies of these compounds on both NK1R /serotonin transporter 

(SERT) targets. 

 validated docking protocols on both targets 
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Abstract 

Depression is a critical mood disorder that affects millions of patients. Available therapeutic 

antidepressant agents are associated with several undesirable side effects. Recently, it has been 

shown that Neurokinin 1 receptor (NK1R) antagonists can potentiate the antidepressant effects of 

serotonin-selective reuptake inhibitors (SSRIs). In this study, a series of phenyl piperidine 

derivatives as potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors were 

applied to quantitative structure–activity relationship (QSAR) analysis. A collection of 

chemometrics methods such as multiple linear regression (MLR), factor analysis–based multiple 

linear regression (FA-MLR), principal component regression (PCR), and partial least squared 

combined with genetic algorithm for variable selection (GA-PLS) were applied to make relations 

between structural characteristics and NK1R antagonism/SERT inhibitory of these compounds. 

The best multiple linear regression equation was obtained from GA-PLS and MLR for NK1R and 

SERT, respectively. Based on the resulted model, an in silico-screening study was also 

conducted and new potent lead compounds based on new structural patterns were designed for 

both targets. Molecular docking studies of these compounds on both targets were also conducted 

and encouraging results were acquired. There was a good correlation between QSAR and 

docking results. The results obtained from validated docking studies indicate that the important 

amino acids inside the active site of the cavity that are responsible for essential interactions are 

Glu33, Asp395 and Arg26 for SERT and Ala30, Lys7, Asp31, Phe5 and Tyr82 for NK1R 

receptors. 

 

 

Keywords: QSAR, Molecular Docking, Neurokinin 1 receptor antagonists, serotonin transporter 

(SERT) inhibitors, in silico-screening 
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Introduction 

Major depressive disorder (MDD), is a mood disorder characterized by an extending and 

tenacious low mood that is accompanied by feeling of sadness and loss of interest. Over 90% of 

people who die by suicide have MDD or another diagnosable mental disorder. Lifetime 

prevalence varies widely, from 3% in Japan to 17% in the United States (1, 2). Older treatment 

modalities focus on using drugs that potentiate the activity of monoamines, particularly serotonin 

(5-hydroxytryptamine; 5-HT) and norepinephrine (3).  

Serotonin transporter (SERT) is the target for several antidepressant drugs including the selective 

serotonin reuptake inhibitors (SSRIs). (4, 5). However, due to the fact that transporter defects are 

associated with a large number of psychiatric diseases, identification of novel and improved 

SERT modulators are urgently needed. The available SSRIs have multiple side-effects, such as 

anxiety, impotency, weight gain, sexual dysfunction and sleep disorders, as well as a delayed 

onset of action (6). Therefore, therapeutic agents with more effective and safer profile are 

needed. 

The tachykinin receptor 1 (TACR1) also known as neurokinin 1 receptor (NK1R) or substance P 

receptor (SPR) is a G protein coupled receptor found in the central nervous system (CNS) and 

peripheral nervous system (PNS). Substance P is the endogenous ligand for this receptor that as a 

neurotransmitter released in response to acute stressors in stress-sensitive brain regions (7). NK1 

antagonists are a novel class of medications that possesses unique antidepressant properties. 

They alone may not be sufficient in treating depression in humans. The first NK1 receptor 

antagonists were developed in the 1980s. Kramer et al. reported that NK1R antagonists acts as 

antidepressant in clinical trials in 1998 (8).  

Other forms of treatment that may be a useful target in the development of medications for the 

treatment of depression is a potential combination strategy that involve SSRIs and NK1R 

antagonists. Degnan et al. showed that development of a dual NK1R/SERT antagonists appear to 

have great antidepressant effects. They undertook that high NK1 receptor occupancy reduce the 

potential SSRI side effects (9). So it is conceivable that development of the dual NK1R/SERT is 

useful strategy to progress the medications for depressing patients (10). 

In the present paper, two different drug design methodologies namely, QSAR and molecular 

docking simulations have been applied for a series of phenyl piperidine derivatives with the 

ability to antagonist NK1R and inhibit serotonin transporter. In a comprehensive study of this 
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system we used a very large descriptor set including topological, geometrical, constitutional, 

functional group, 2D autocorrelation, atom-centered fragments, electrostatic, quantum and 

chemical to describe the physicochemical properties of the molecules. Different statistical 

methods were applied to model the relationship between the structural features and the serotonin 

transporter inhibitory and NK1R antagonist activity of the studied compounds. These methods 

were: (i) multiple linear regression (MLR) (ii) factor analysis–based multiple linear regression 

(FA-MLR), (iii) principal component regression (PCR) and (iv) partial least squared combined 

with genetic algorithm for variable selection (GA-PLS). Validated molecular docking simulation 

technique was also performed on all compounds of dataset as well as the designed compounds to 

reach the detailed molecular binding models for these compounds interacting with the key active 

site amino acids of targets. This usually helps the medicinal chemist to further understand the 

structure-activity relationships of the studied molecules. 

 

Materials and methods 

Data set 

A data set consisting of 49 phenyl piperidine derivatives as a series of potent dual NK1R 

antagonists/ SERT inhibitors were selected for the current study (9). The structural features and 

biological activity details of these compounds are listed in Table 1. The biological data reported 

as IC50 values and converted to the pIC50 and finally used for the QSAR modeling studies. 

 

Molecular descriptors 

Two dimensional structures of the ligands were constructed using ChemBioDraw 12.0 software 

(11). The ligands were subjected to minimization procedures by means of an in house TCL script 

using Hyperchem (Version 8, Hypercube Inc., Gainesville, FL, USA). Each ligand was 

optimized with different minimization methods such as molecular mechanics (MM+) followed 

by quantum based semi-empirical method (AM1) using Hyperchem package. Z-matrices of the 

structures were provided by the software and transferred to the Gaussian 98 program (12). Large 

number of molecular descriptors was calculated using Hyperchem, Gaussian 98 and Dragon 

package (13). Some chemical parameters including molecular volume (V), molecular surface 

area (SA), hydrophobicity (LogP), hydration energy (HE) and molecular polarizability (MP) 

were calculated using Hyperchem Software. Highest occupied molecular orbital (HOMO) and 
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lowest unoccupied molecular orbital (LUMO) energies, the most positive and the most negative 

net atomic charges, the average absolute atomic charge and molecular dipole moment were 

calculated by Gaussian98 software. Quantum chemical indices of hardness (η = 0.5 

(HOMO+LUMO)); softness (S = 1⁄η); electronegativity (χ = -0.5 (HOMO-LUMO)); and 

electrophilicity (ω = χ2⁄2η) were calculated according to the equations proposed by 

Thanikaivelan et al. (14). Dragon calculated different topological, geometrical, charge, empirical 

and constitutional descriptors for each molecule. 2D autocorrelations, aromaticity indices, atom-

centered fragments and functional groups was also calculated by dragon. The brief description of 

some of them is listed in Table 2. 

Variable importance in the projection (VIP) 

 

Variable important in projection (VIP) was employed in order to survey the relative importance 

of the variable appeared in the final model obtained by GA-PLS method (15). The importance of 

terms in PLS model is reflected in VIP values. As it was explained by Erikson et al., X-variables 

(predictor variables) could be classified pursuant to their relevance in explaining y (predicted 

variable), so that VIP > 1.0 and VIP < 0.8 mean highly or less influential, respectively, and 0.8 < 

VIP< 1.0 means moderately influential (16). 

Docking procedure 

The docking studies were carried out by means of an in house batch script (DOCKFACE) (17, 

18) of AutoDock 4.2. For docking procedure, each ligand was optimized with MM+ then AM1 

minimization method using HyperChem 8. Then the partial charges of atoms were calculated 

using Gasteiger-Marsili procedure implemented in the AutoDock Tools package (19). Non-polar 

hydrogens of compounds were merged and then rotatable bonds were assigned. The output 

structures were converted to PDBQT using MGLtools 1.5.6 (20).  

The three dimensional crystal structure of SERT (PDB ID: 3GWW) and NK1R (PDB ID: 1NK1) 

were retrieved from protein data bank (http://www.rcsb.org/pdb/home/home.do). All water 

molecules were removed, missing hydrogens were added and after determining the Kollman 

united atom charges non-polar hydrogens were merged into their corresponding carbons using 
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AutoDock Tools (21). As the final part of this process, desolvation parameters were assigned to 

each protein atom. Among the three different search algorithms performed by AutoDock 4.2 the 

commonly used Lamarckian Genetic Algorithm (LGA) was applied (22, 23). Subsequently, the 

enzymes were converted to PDBQT using MGLTOOLS 1.5.6. 

For Lamarckian GA, a maximum number of 2,500,000 energy evaluations, 27000 maximum 

generations; 150 population size, a gene mutation rate of 0.02; and a crossover rate of 0.8 were 

applied. The grid maps of the receptors were calculated using AutoGrid tools of AutoDock 4.2. 

The size of grid was set in a way to include not only the active site but also considerable portions 

of the encircling surface. A grid box of 55×59×69 and 45×45×45 points in x, y, and z directions 

was built and centered on the center of the ligand in the complex with a spacing of 0.375 Å for 

1NK1R and 3GWW, respectively. Number of points for 1NK1R in x, y and z was 20.055, 18.173 

and 25.706, and for 3GWW was 25.388, 20.809 and 22.282, consequently. AutoDock Tools was 

employed to produce both grid and docking parameter files i.e. gpf and dpf. 

Cluster analysis was performed on the docked results using a root mean square deviation 

(RMSD) tolerance of 2 Å. For the internal validation phase, co-crystal ligand (fluoxetine) inside 

the pdb file of SERT (3GWW) was extracted using a viewer and treated the same as other 

ligands. All the docking protocols were done on validated structures with RMSD values below 2 

Å. 

Ligand-receptor interactions were all detected on the basis of docking results using Autodock 

tools program (ADT, Version 1.5.6), VMD software (24) and PLIP (fully automated protein–

ligand interaction profiler) (25). These software visualize hydrogen bonding, π-π stacking and π-

cationic as well as hydrophobic interactions which are established through the docking 

procedure. 

 

Model development 

The calculated descriptors were collected in a data matrix whose number of rows and columns 

were the number of molecules and descriptors, respectively. Four different regression methods 

were applied for QSAR equations including: simple multiple linear regression with stepwise 
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variable selection (MLR), Factor analysis as the data preprocessing step for variable selection 

(FA-MLR), Principal component regression analysis (PCRA) and Genetic algorithm–partial least 

squares (GA-PLS). These known methods are well applied in the QSAR studies (26). 

Here, stepwise selection and elimination of variables was applied for developing QSAR models 

using SPSS software (version 21; SPSS Inc., IBM, Chicago, IL, USA). The resulted models were 

validated by leave-one-out cross-validation procedure to check their predictability and robustness 

using MATLAB 2015 software (version 8.5; Math work Inc., Natick, MA, USA).  

FA-MLR was also performed on the dataset. Factor analysis (FA) was used to reduce the number 

of variables and to detect structure in the relationships between them. This data-processing step 

is applied to identify the important predictor variables and to avoid co-linearity among them 

(27). Principle component regression analysis, PCRA, was also tried for the dataset along with 

FA-MLR. Co-linearities among X variables are not involved as a disturbing factor with PCRA 

and the number of variables included in the analysis may exceed the number of observations 

(28). In this method, factor scores, as obtained from FA, are used as the predictor variables (27). 

In PCRA, all descriptors are assumed to be important while the aim of factor analysis is to 

identify relevant descriptors. 

The partial least square (PLS) regression method was applied to the NIPALS-based algorithm 

existed in the chemometrics toolbox of MATLAB software. Leave-one-out cross-validation 

procedure was used to obtain the optimum number of factors based on the Haaland and Thomas 

F-ratio criterion (29, 30). The MATLAB PLS toolbox developed by eigenvector company was 

used for PLS and GA modeling. All calculations were run on a core i7 personal computer (CPU 

at 6 MB) with Windows 7 operating system. 

 

Model validation 

Statistical parameters such as standard error of regression (SE), correlation coefficient (R2), 

variance ratio (F) at specified degrees of freedom, leave-one-out cross-validation correlation 

coefficient (Q2), root mean square error of cross-validation (RMScv) and double cross validation 

(Cvcv) were employed for validity of regression equation. In order to test the developed model 

performances, 20 % of the molecules were selected as test set molecules. The predictive value of 
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a QSAR model that has not been taken into account during the process of developing the model 

should be tested on an external set of data. QSAR model was developed in more than three data 

sets and the best equation were selected as the best model.  

 

Applicability domain 

One of the great uses of a QSAR model is based on its precise prediction ability for new 

compounds. It is important to emphasize that no matter how valid, significant and validated a 

QSAR may be, it cannot be expected to reliably predict the modeled property for the entire space 

of chemicals. Therefore, before a QSAR is put into use for screening chemicals, its domain of 

application must be defined and predictions for only those chemicals that fall in this domain may 

be considered reliable. The applicability domain is appraised by the leverage values for each 

compound. A Williams plot (the plot of standardized residuals versus leverage values (h)) can 

then be used for an immediate and simple graphical detection of both the response outliers (Y 

outliers) and structurally influential chemicals (X outliers) in our model. In this graph, the 

applicability domain is established inside a squared area within ±x (standard deviations) and a 

leverage threshold h*.  

The numerical value of leverage has certain characteristic: (a) the value is always greater than 

zero, (b) the lower the value; the higher is the confidence in the prediction. A value of 1 indicates 

very poor prediction. A value of 0 indicates perfect prediction and will not be achieved. Another 

factor for analysis of the results is warning leverage (h*). The threshold h* is generally fixed at 

3(k + 1) ⁄n (k is the number of model parameters and n is the number of training set 

compounds), whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a 

high leverage value (h > h*). A leverage greater than warning leverage h* means that the 

predicted response is the result of substantial extrapolation of the model and therefore may not 

be reliable. From the other point of view, when the leverage value of a compound is lower than 

the threshold value, the probability of agreement between observed and predicted values is as 

high as that for the training set compounds (31, 32). 
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Results and Discussion 

 

Here, we developed a detailed QSAR study using a combination of chemical, electronic and 

substituent constant, to explore structural parameters affecting phenyl piperidine derivatives as 

potent dual NK1R antagonists/SERT inhibitors. Among the different chemometrics tools 

available for modeling the relationship between the biological activity and molecular descriptors, 

four methods (i.e. stepwise MLR, FA-MLR, PCRA, and GA-PLS) were applied. 

 

MLR modeling 

In the first step, separate stepwise selection-based MLR analyses were performed using different 

types of descriptors, and then, an MLR equation was obtained utilizing the pool of all calculated 

descriptors. The results for SERT and NK1R are summarized in Table 3 and Table S1 (available 

in supplementary file) respectively. Correlation coefficient (r2) matrix for the descriptors used in 

different MLR equations is shown in Table 4. Collinear descriptors degrade the performance of 

MLR equations and such models have lowered prediction ability. The correlation coefficient (r2) 

matrix for the descriptors used in MLR equation 1, shows that no significant correlation exists 

between pairs of descriptors (Table 4). The same results were obtained for NK1R (Table S2). 

The statistical parameters calculated for each target such as R2, correlation coefficient (R2p) of 

test set, SE, F at specified degrees of freedom, Q2, Cvcv and RMScv were used for validating the 

goodness of fit of the resulted QSAR equations are represented in both Table 3 and Table S1. 

Equation 1 (in Table 3) and 1a (in Table S1) was selected as the best equation in the MLR model 

in both tables. The selected variables in table 3 demonstrate that Chemical (SAA, SAG), 

topological (TIC2), 2D autocorrelations (MATS2e, MATS4V, MATS2V) descriptors and in 

Table S1, constitutional (RBN), functional (nCIc, nHDon, nNHR) and topological (x3sol, 

D/Dr10) descriptors affect the NK1R antagonist and SERT inhibitory activity of the studied 

compounds, respectively.  

 

FA-MLR and PCRA 



11 
 

Table 5 shows the five factor loadings of the variables (after VARIMAX rotation) for the 

compounds based on their SERT inhibitory (factor 1, 2, 3, 5 and 12). As it is observed in the 

table, about 72% of variances in the original data matrix could be explained by selected five 

factors. As it was shown in Table S3, factors 1, 2, 5, 6, 7 and 15 explain about 77% of variances 

in the original data matrix for NK1R antagonist activity. 

Table 4 revealed that, descriptors such as nHAcc, G(F..F), MATS4m, MATS6m, GATS2m, 

GATS2m and ATS7e are the highest loading values for factor 1. The highest loading values for 

factor 2 are associated with Ref, VAR, IVDM, PCWTe, VEA2, X2V, nNHR and DipY whereas 

ATS1V, ATS3V and ATS6V are the highly loaded descriptors of factor 5. Table 5 revealed that, 

factors 1 and 2 are moderately loaded with SERT inhibitory activity. Interestingly, the former 

possessed the highest loadings from functional (nHAcc), geometrical (G(F..F)) and 2D 

autocorrelations (MATS4m, MATS6m, GATS2m, GATS2m and ATS7e) whereas the latter is 

containing the information from chemical (Ref), topological (X2V, IVDM, VAR and VEA2), 

charge (PCWTe), functional (nNHR) and quantum (ASP) descriptors. The subsequent FA-MLR 

equation using highly loaded descriptors is shown in Table 2, Eq.2.  

As it was shown in Table S3, the highest loading values for factor 2 are associated with SAA, 

SAG, MW, X2V, ISIZ, IVDM, TIC2, logp, H3D and piPC06 whereas X5Av, SEigZ, nHAcc, 

MATS3e, GATS4m, GATS2m, G(F..F) and ATS7e are the highly loaded descriptors of factor 1. 

Table 5 revealed that, factors 1 and 2 are moderately loaded with NK1R antagonist activity. 

Interestingly, the former possessed the highest loadings from chemical (MW, logp, SAA and 

SAG), topological (X2V, ISIZ, IVDM, piPC06 and TIC2), geometrical (H3D) descriptors 

whereas the latter is containing the information from functional (nHAcc), geometrical (G(F..F)) 

and 2D autocorrelations (MATS3e, GATS4m, GATS2m and ATS7e), topological (X5Av, 

SEigZ) descriptors. The subsequent FA-MLR equation using highly loaded descriptors is shown 

in Table S1, Eq.2a. 

 

PCRA 

When factor scores were used as the predictor parameters in a multiple regression equation using 

forward selection method (PCRA), equation 3 was obtained. Factor scores, instead of selected 

descriptors, contain information for the different descriptors, so the chance of loss of information 

is decreased. By principle component method, five (Table 5) and six (Table S3) factors scores 
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were used as independent parameters for developing QSAR equations. These factor scores were 

used as independent parameters for developing QSAR equations. The variables used in Eq. 3 

shows statistical quantities similar to those obtained by FA-MLR method. But, it indicates partly 

higher calibration and lower cross-validation statistics with respect to Eq.2.  

In Table 5, Factor score 1 signifies the importance of nHAcc, G(F..F), MATS4m, MATS6m, 

GATS2m, GATS2m and ATS7e descriptors. Factor score 2 indicates the importance of Ref, 

VAR, IVDM, PCWTe, VEA2, X2V, nNHR and DipY descriptors. Factor score 3 indicates the 

importance of ATS6v, ATS3v and ATS1v. Factor score 5 indicates the importance of nCIC, 

PiID, D/Dr10 and Jhept descriptors. Factor score 12 signifies the importance of RNCG, PCWTe 

and qneg descriptors. 

In Table S3, Factor score 1 indicates the importance of X5Av, SEigZ, nHAcc, MATS3e, 

GATS4m, GATS2m, G(F..F) and ATS7e. Factor score 2 signifies the importance of Ref, X2V 

and ISIZ descriptors. Factor score 7 indicates the importance of Jhetz, Jhetp and x1A descriptors. 

The factor score 6 reveals the importance of GATS7p and ATS8v descriptors. Factor score 5 

indicates the importance of SAG and ASP Factor score 15 signifies the importance of, GATS5p, 

MATS5v, MATS5m and PJI2 descriptors. 

 

GA-PLS 

In PLS analysis, the descriptors data matrix is decomposed to orthogonal matrices with an inner 

relationship between the dependent and independent variables. Therefore, unlike MLR analysis, 

the multicolinearity problem in the descriptors is omitted by PLS analysis. Scince a minimal 

number of latent variables are used for modeling in PLS; this modeling method coincides with 

noisy data better than MLR. So, many different GA-PLS runs were done using different initial set 

of populations. The statistical parameters calculated for this model are represented in Table 3 for 

SERT inhibitory and in Table S1 for NK1R antagonist activity.  

Table 3 shows that a combination of 2D autocorrelations (ATS4p, MATS6m and MATS4m), 

topological (STN), geometrical (J3D) and charge (RNCG) descriptors have been selected by 

GA-PLS to account for the SERT inhibitory activity. As it is shown in Table S1, Eq. 4a, a 

combination of 2D autocorrelations (MATS5v, MATS7m, MATS3m and MATS3e), geometrical 

(SEigZ), and topological (piPC06 and PiID) descriptors have been selected by GA-PLS to 

account for the NK1R antagonist activity. In this table, Eq. 4a with high statistical quality 
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parameters was obtained from the pool of calculated descriptors (i.e., R2 = 0.89 and Q2 = 0.84) 

and, the predictive R2 value for the test set was found to be 0.75. Table S1 shows that none of the 

suggested QSAR models were obtained by chance and the best set of calculated descriptors was 

selected by genetic algorithm because of its greatest statistical parameters. Therefore the best 

predictive results were observed.  

The most convenient GA-PLS model that resulted in the best fitness contained 32 indices for 

NK1R and 40 indices for SERT. The PLS estimate of coefficients for the descriptors of NK1R are 

given in Figure 1. As it observed, a combination of chemical, topological, geometrical, quantum, 

2D-autocorrelations and functional descriptors have been selected by GA-PLS to account the 

NK1R antagonist activity of phenyl piperidine derivatives. To measure the significance of the 32 

selected PLS descriptors in the NK1R antagonist activity; VIP was calculated for each descriptor. 

The VIP analysis of PLS equation is shown in Figure 2. VIP shows that SAA, SAG, MATS5v, 

MATS7e, BAC, GNar, PW4, VEA2 and SIC5 are the most important indices in the QSAR 

equation derived by PLS analysis. In addition, VIP < 0.8 mean less influential parameters. 

The PLS estimate of coefficients and the VIP analysis for the descriptors of SERT are given in 

figure S1 and figure S2, respectively. VIP shows that nNHR, RBN, STN, piID, ATS5v, 

MATS4v, GATS4p, RPCG, DipY, MATS5v, MATS1v, FDI, SAA and RNCG are the most 

important indices in the QSAR equation derived by PLS analysis for SERT inhibitory. GATS6m 

and DECC have been found to be moderately influential parameters. 

By considering the GA-PLS equation on these targets (Table 3 and Table S1), It is obvious that 

the dominant descriptors in both equations is 2D-autocorrelation descriptors. These descriptors 

depict the topological structure of the compounds, but are more complicated in nature with 

respect to the classical topological descriptors. The calculation of these descriptors includes the 

summations of different autocorrelation functions related to different structural lags and leads to 

different autocorrelation vectors corresponding to the lengths of the substructural fragments. As 

a result, these descriptors address the topology of the structure or parts thereof in association 

with a specific physicochemical property. 

 

In silico screening  
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In silico screening studies can be used to replace expensive and time consuming in vivo 

experiments in the early stages of drug development. It is thought to have the potential to speed 

the rate of discovery, predicting and identifying new pharmaceutical compounds.Virtual 

screening is a forceful technique to identify potentially active compounds from molecular 

databases and it was applied by deletion, insertion and substitution of different substitutes on the 

parent molecules and the effects of the structural modifications on the biological activity were 

investigated. 

The domain application of QSAR model was determined to use the model for screening new 

compounds. The applicability domain (AD) of QSAR model was applied to verify the prediction 

reliability, to recognize the troublesome compounds and to predict the compounds with 

acceptable activity that falls within this domain. We employed the important descriptors selected 

in both GA-PLS (SERT inhibitors( and MLR (NK1R antagonists( model for designing new 

active compounds because of theirs greatest statistical parameters compared to the others. 

Analyzing the model AD in the Williams plot of the GA-PLS model of NK1R (figure 3A) and 

MLR model of SERT (figure 3B) based on the whole data set, appeared that none of the 

compounds were identified as an obvious outlier for these activity. As it is cleared, none of the 

compounds have leverage (h) values greater than the threshold leverages (h*). The warning 

leverage (h*), was found to be 0.61 for NK1R and 0.54 for SERT. The compounds that had a 

standardized residual more than three times of the standard deviation units were considered to be 

outliers. For both the training set and prediction set of targets, the presented model matches the 

high quality parameters with good fitting power and the capability of assessing external data. 

Moreover, almost all of the compounds were within the applicability domain of the proposed 

model and were evaluated accurately. While chemicals with a leverage value higher than h* 

were considered to be influential or high leverage chemicals (29, 30). 

According to the developed QSAR model, the in silico screening was used to design new 

compounds with improved potential NK1R/SERT inhibitor activity. Then, the in silico screen 

was applied by substituting diverse groups in different places. The results of this investigation 

are summarized in Table S4. As it was shown in Table S4, 30 novel compounds were designed 

and their predicted activities for SERT inhibitory and NK1R antagonist activity based on MLR 

and GA-PLS equations, respectively as well as their docking binding energies were obtained. 

Leverage values show that all of the designed compounds were within the applicability domain. 
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Among these molecules, the compound 1a, 6a, 8a, 10a, 1b, 6b, 9b, 14b and 17b showed the best 

activity. These compounds have a good potentially for becoming antidepressant agent.  

Finally, this result confirms the reliability of the models and it shows that it is possible to identify 

new synthetic compounds for drug discovery, with the aim of the in silico screening QSAR 

studies.  

To have a consideration on the cross-validated prediction results, the predicted activity data are 

plotted against the experimental activities in figure 4. As it was mentioned above, the least 

scattering of data was obtained from GA-PLS and MLR for NK1R and SERT, respectively. High 

regression ratio (R2 = 0.89, 0.90 for SERT and NK1R respectively) in this plot shows the great 

agreement between cross-validated predicted values of activity and the experimental activity. 

 

Docking Studies 

In the present study, molecular docking simulations were performed on 49 compounds of dataset 

as well as 30 designed compounds, to elucidate the interactions between SERT and NK1R targets 

and their inhibitors further and to gain some insight into their molecular binding mode. The 

results obtained from this part of study including the estimated free binding energy values 

(ΔGbind) for the best position of the docked compounds, expressed in kcalmol-1, along with the 

corresponding favorable interactions with the key amino acid residues at the active site of 

enzyme are summarized in Table 1, S1 and figures 5-11. 

In the validity evaluation step of docking process, redocking of fluoxetine, which is the natural 

substrate of SERT with a high affinity for this enzyme, indicated that the X-ray crystallography 

conformer was extremely identical to the docked conformer. RMSD of docking for Fluoxetine in 

comparison with its coordination in the crystal structure was 0.043. Figure 5A displays that the 

best docked pose of the fluoxetine (green) within the enzyme cavity is in accordance with that in 

the crystal structure (yellow) which points toward the reliability of the molecular docking 

procedure. Figure 5B shows that amine side chain group of fluoxetine is involved in hydrogen 

bonds with Asp395. There also exist donor hydrogen bonds between hydrogen of piperidine ring 

with Asp31. The two phenyl groups are also involved in arene-cation interaction with Arg26. 

 

As it was shown in Table 1, the studied compounds can classified to five different class base on 

their structures. The structural changes in this compounds have affected the docking results. The 
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ΔGbind values of the best docked poses of class 1 (compounds 1-6) are within the range of -9.07 

to -9.93 kcal.mol-1 for SERT and -5.87 to -6.74 kcal.mol-1 for NK1R. The best docking binding 

energies of class 2 (compounds 7-13) are within the range of  -8.81 to -10.55 kcal.mol-1 for 

SERT and -6.29 to -7.71 kcal.mol-1 for NK1R. Class 3 (compounds 14-36) docking binding 

energies are within the range of -9.16 to -10.93 kcal.mol-1 for SERT and -6.12 to -8.84 kcal.mol-1 

for NK1R. The best docked poses of class 4 (compounds 37-44) are within the range of  -9.67 to 

-10.52 kcal.mol-1 for SERT and -7.36 to -8.96 kcal.mol-1 for NK1R. ΔGbind values at the range of 

-7.72 to -10.01 kcal.mol-1 for SERT and -7.72 to -8.08 kcal.mol-1 is seen for class 5 (compounds 

45-49). Based on these results, it can be concluded that class 4 has the best docking binding 

energies especially on NK1R. It should be mentioned that all of the studied compounds has the 

higher docking binding energy in compared to fluoxetine (the co-crystal ligand of SERT) with 

ΔGbind values of -6.73 kcal.mol-1. 

As indicated in figure 6, the hydrogen atom attached to nitrogen of piperidine and tetrazole ring, 

is involved in hydrogen bond interactions with residues Glu33 and Asp395, respectively. The 

phenyl ring attached to piperidine and tetrazole ring, is involved in arene-cation interactions with 

residues Arg26. The side chains consisting of amino acid residues Ile107, Phe244, Phe311, 

Val29, Ala310 and Asp392 make direct van der Waals contacts with compound 4.  

In NK1R binding mode (figure 7), Compound 4 interacts via acceptor hydrogen bonds through 

nitrogen of tetrazole with Ala30 and through oxygen group with Lys7. There also exist donor 

hydrogen bonds between hydrogen attached to the nitrogen of tetrazole with Asp31 and 

hydrogen of piperidine ring with Phe5. The amino acid residues consist of Ile2, His3, Thr29, 

Phe52 and Tyr82 are also involved in the hydrophobic site of active site. 

Docking studies on compound 11 with SERT receptor (Figure 8) revealed that, three arene-

cation interactions are existed between thiazole ring, phenyl ring attached to piperidine and 

phenyl ring bearing CF3 group with Arg26. The hydrogen atom attached to nitrogen of 

piperidine is involved in hydrogen bond interactions with residues Glu33. The other amino acid 

residues in active site such as Ala310, Val29, Leu21, Phe244, Leu25, Ile107, Phe311 and 

Asp395 are involved in hydrophobic interactions. 

Binding mode of compound 11 with NK1R (figure 9) shows that, oxygen group is involved in 

two acceptor hydrogen bonds with Tyr82 and Lys7. There also exist donor hydrogen bonds 
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between hydrogen of piperidine ring with Asp31. The phenyl attached to piperidine ring is 

involved in arene-cation interaction with Lys7. 

As it was shown in figure 10, the key amino acids in binding mode of compound 23 and 41 are 

two arene-cation interactions between two phenyl ring attached to piperidine and phenyl ring 

bearing CF3 group with Arg26. There is also existed hydrogen bond interaction between 

hydrogen attached to nitrogen of piperidine with residues Glu33.  

Compound 23 interacts via hydrogen bond through its oxygen with Tyr82. As it was depicted in 

figure 11B, this interaction was also seen in compound 41. Both of these compounds interact 

between through hydrogen of their piperidine ring with Asp31. There is evidence that arene-

cation interaction is existed between phenyl attached to piperidine ring of compound 23 with 

Lys7. The phenyl bearing methoxy group is involved in this interaction with Lys7 in compound 

41. 

The results obtained from this docking study indicate that the important amino acids inside the 

active site cavity that are in charge of essential interactions are Glu33, Asp395 and Arg26 for 

SERT and Ala30, Lys7, Asp31, Phe5 and Tyr82. The majority of the studied compounds took 

part in hydrogen bond formation especially through the hydrogen attached to nitrogen of 

piperidine with Glu33 and Asp31 for SERT and NK1R inhibitory activity, respectively. It should 

be noted that compounds of high activity form one or more hydrogen bonds with the active site 

residues. Therefore, one of the essential requirements for optimum NK1R antagonist/SERT 

inhibition is hydrogen bond formation by ligands. The docking results also suggest that apart 

from hydrogen bonding formation, binding of different compounds with the active site is 

stabilized by van der Waals and hydrophobic interactions with the nonpolar amino acids. The 

arene-cation interaction is also existed between ligands and their targets through their phenyl 

groups. 

Molecular docking were applied on the designed compounds to gain some insight into their 

molecular binding mode on both targets. Binding mode of 1a and 17b in the active site of SERT 

and NK1R are available in supplementary file. 

As it was shown in figure 12, the results of molecular docking simulations were highly in 

accordance with the experimental data of SERT inhibition and activity, respectively.  

 

Conclusions 
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Quantitative relationships between molecular structure and SERT inhibitory as well as NK1R 

antagonist activity of a series phenyl piperidine derivatives were discovered by a collection of 

chemometrics methods including MLR, GA-PLS, FA-MLR and PCRA.  The reliability, accuracy 

and predictability of the proposed models were evaluated by various criteria, including cross-

validation, the root mean square error of prediction (RMSEP), root mean square error of cross-

validation (RMSECV), validation through and Y-randomization. In this series a significant role 

of topological, geometrical, 2D-autocorrelations, and charge descriptors on the inhibitory activity 

was observed. A comparison between the different statistical methods employed indicated that 

GA-PLS and MLR represented superior results for NK1R and SERT, respectively. According to 

the developed QSAR model, in silico screening was applied and new compounds such as 1a, 6a, 

8a, 10a, 1b, 6b, 9b, 14b and 17b with potential inhibitory activity on both targets were 

suggested for synthesis. The results of molecular docking simulations on both receptors were 

highly in accordance with the QSAR and experimental data. 
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Figure 1. PLS regression coefficients for the variables used in GA-PLS model for NK1R 

  

S
A

A

S
A

G

G
N

ar

Jh
et

Z

P
W

3

P
W

4

P
W

5

B
A

C

IC
4

S
IC

5

S
E

ig
Z

V
E

A
2

p
iP

C
0

6

p
iI

D

A
T

S
5

v

M
A

T
S

2
m

M
A

T
S

3
m

M
A

T
S

6
m

M
A

T
S

7
m

M
A

T
S

1
v

M
A

T
S

3
v

M
A

T
S

4
v

M
A

T
S

5
v

M
A

T
S

8
v

M
A

T
S

3
e

M
A

T
S

7
e

G
A

T
S

2
m

G
A

T
S

5
m

G
A

T
S

8
e

F
D

I

n
H

A
cc

H
o
m

o

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

S
ta

n
d

a
r
d

iz
e
d

 c
o

e
ff

ic
ie

n
ts

Variable

pIC50Nk1R / Standardized coefficients

(95% conf. interval)



23 
 

 

 

Figure 2. Variable importance in the projection (VIP) for the variables used in GA-PLS model for NK1R. 
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Figure 3. Williams plot for the calibration set and external prediction set for A) NK1R antagonist activity 

B) SERT inhibition of studied compounds. 
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Figure 4. A) Plots of cross-validated predicted values of activity by MLR against the experimental values 

(SERT inhibition). B) Plots of cross-validated predicted values of activity by GA-PLS against the 

experimental values (NK1R antagonist). 
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Figure 5. A) Comparison of two bound conformations of fluoxetine in the SERT active site: the yellow 

model shows the crystal orientation and the redocked result is shown as a green model. B) The structure 

of fluoxetine surrounded by the key residues in the active site of SERT. 

  



27 
 

 

 

Figure 6. The structure of 4 surrounded by the key residues in the active site of SERT. 
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Figure 7. The structure of 4 surrounded by the key residues in the active site of NK1R. 

  



29 
 

 

 

Figure 8. The structure of 11 surrounded by the key residues in the active site of SERT. 
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Figure 9. The structure of 11 surrounded by the key residues in the active site of NK1R. 
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Figure 10. A) The structure of 23 surrounded by the key residues in the active site of SERT. B) The 

structure of 41 surrounded by the key residues in the active site of SERT 
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Figure 11. A) The structure of 23 surrounded by the key residues in the active site of NK1R. B) The 

structure of 41 surrounded by the key residues in the active site of NK1R. 
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Figure 12. Plots of experimental pIC50 values versus docking binding energy, A) for NK1R antagonist B) 

for SERT inhibition. 
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Table 1. Chemical structure of the compounds used in this study and their docking binding energy, 

experimental and cross-validated predicted activity on both targets (SERT, NK1R). 

 

 

 

             1-6                       7-13                                14-36                       37-44                         45-49       

Name R 

SERT NK1R 

Exp.pIC50 Pred.pIC50 
∆E1 

(kcal/mol) 
Exp.pIC50 Pred.pIC50 

∆E 

(kcal/mol) 

1 

 

7.43180 7.29358 -9.07 7.06048 7.13456 -6.68 

2 

 

7.15490 7.11435 -9.54 6.74473 7.22218 -6.34 

3 

 

7.24413 7.46327 -9.66 6.15490 6.04202 -5.87 

4 

 

8.06550 7.83271 -9.93 6.69897 6.98940 -6.74 

5 

 

7.30103 7.90908 -9.31 7.18709 7.32457 -6.56 

6 

 

8.01773 7.83389 -9.82 7.44370 7.30049 -6.43 

7  8.43180 8.29871 -10.3 8.20066 7.81052 -7.21 

8 
 

7.79588 7.97621 -9.89 8.79588 8.65321 -7.71 

9 
 

8.13077 7.97621 -9.88 7.38722 7.45843 -6.97 

10 
 

7.74473 7.61231 -9.53 7.32790 7.05373 -6.45 

11 

 

8.38722 8.22359 -10.55 7.15490 7.07818 -6.81 

12 
 

6.95861 6.92776 -9.02 6.92082 6.78692 -6.42 
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13 

 

6.92082 6.95331 -8.81 6.26761 6.23751 -6.29 

14 2-Cl 8.19382 8.45031 -10.76 7.16749 7.01135 -7.23 

15 2-F 8.11919 8.24168 -10.28 7.63827 7.70819 -7.75 

16 2-Me 7.88606 8.04170 -10.51 6.88606 7.25101 -6.12 

17 2-NO2 8.45593 8.36999 -10.21 8.18709 8.29347 -8.11 

18 2-OMe 8.37675 8.04170 -10.41 7.26761 7.55062 -7.38 

19 3-CH3 7.85387 7.97222 -9.63 7.61979 8.16836 -7.57 

20 3-CN 8.00000 7.91234 -10.11 7.30980 7.21673 -7.11 

21 3-F 8.20066 7.86313 -10.79 8.30103 8.15751 -7.83 

22 3-NH2 7.52288 7.33074 -9.89 7.60206 7.71348 -8.1 

23 3-NO2 8.37675 8.38663 -10.93 8.28400 8.07797 -7.56 

24 3-OH 7.56864 7.65148 -9.31 7.88606 8.13910 -6.74 

25 
3,4- 

OCH2O 
7.34679 7.42436 -9.77 8.14874 8.23925 -7.39 

26 4-CF3 7.44370 7.85456 -9.16 7.52288 8.27244 -7.1 

27 4-Cl 8.74473 8.37799 -10.34 8.55284 8.00116 -6.99 

28 4-CO2Me 7.60206 7.68725 -9.76 7.76955 7.98603 -7.38 

29 4-F 8.82391 8.71349 -10.02 8.65758 8.16384 -7.84 

30 4-Me 8.19382 8.06294 -9.86 8.07572 8.01458 -7.67 

31 4-NMe2 8.45593 8.03829 -10.45 7.74473 7.65713 -7.31 

32 4-NO2 8.13668 8.42165 -9.86 8.42022 8.33056 -7.62 
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33 4-OEt 7.85387 7.94014 -9.48 8.46852 8.56214 -7.78 

34 4-OH 7.56864 7.69970 -9.27 8.44370 8.18958 -7.65 

35 4-OMe 7.82391 8.06294 -9.95 9.03152 9.14724 -8.78 

36 4-CN 8.39794 8.25462 -10.11 9.34679 8.72278 -8.84 

37 

 

8.05061 8.10309 -10.13 8.95861 9.00057 -7.92 

38 

 

8.15490 8.23396 -9.97 9.49485 9.28372 -8.96 

39 

 

8.43180 7.95500 -9.94 9.04096 8.95015 -8.7 

40 

 

7.32790 7.70475 -9.73 8.31876 8.31605 -7.55 

41 

 

8.50864 8.71208 -10.52 8.95861 8.96431 -7.92 

42 
 

8.56864 8.31721 -9.67 8.92082 9.02304 -7.88 

43 
 

8.39794 8.25462 -9.69 8.09151 8.30863 -7.36 

44 
 

8.00000 8.25462 -9.67 8.72125 8.82914 -7.81 

45 Me 8.02228 8.21128 -10.01 9.53760 9.67454 -7.79 

46 Et 6.37675 6.38013 -8.87 9.60206 9.11887 -7.72 

47 i-Pr 6.34679 6.42263 -8.83 9.40894 9.31278 -7.89 

48 c-Pr 5.67778 5.80321 -7.72 8.74473 9.11887 -7.85 

49 Bn 6.09691 6.01769 -8.32 8.69897 9.02233 -8.08 

1 docking binding energy 
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Table 2. Definitions of molecular descriptors present in the models 

Descriptors Brief description 

SAA Molecular surface area apparent 

SAG surface area grid 

MATS1e ran autocorrelation - lag 1 / weighted by aMotomic Sanderson 

electronegativities 

MATS2e ran autocorrelation - lag 2 / weighted by aMotomic Sanderson 

electronegativities 
MATS3e ran autocorrelation - lag 3 / weighted by aMotomic Sanderson 

electronegativities 
MATS2V Moran autocorrelation - lag 2 / weighted by atomic van der Waals volumes 

MATS4V Moran autocorrelation - lag 4 / weighted by atomic van der Waals volumes 

MATS5V Moran autocorrelation - lag 5 / weighted by atomic van der Waals volumes 

MATS3m Moran autocorrelation- lag 3 / weighted by atomic masses 

MATS4m Moran autocorrelation - lag 4 / weighted by atomic masses 
MATS5m Moran autocorrelation - lag 5 / weighted by atomic masses 

MATS6m Moran autocorrelation - lag 6 / weighted by atomic masses 
MATS7m Moran autocorrelation - lag 7 / weighted by atomic masses 
GATS4p Geary autocorrelation - lag 4 / weighted by atomic polarizabilities 

GATS6m Geary autocorrelation - lag 6 / weighted by atomic masses 

piPC06 molecular multiple path count of order 06 

ATS4p Broto-Moreau autocorrelation of a topological structure - lag 4 / weighted by 

atomic polarizabilities 

ATS5v Broto-Moreau autocorrelation of a topological structure - lag 5 / weighted by 

atomic van der Waals volumes 

PiID conventional bond order ID number 

nNHR number of secondary amines (aliphatic) 

nCIC number of rings 

nHDon Number of donor atoms for H-bonds (N and O) 

x3sol solvation connectivity index chi-3 

D/Dr10 distance/detour ring index of order 10 

RBN total number of rotatable bonds 

Jhetp Balaban-type index from polarizability weighted distance matrix 

LP1 Lovasz-Pelikan index 

DMY (DipY) Molecular dipole moment at Y-direction 

SPAM average span R 

RBF rotatable bond fraction 

STN spanning tree number (log) 

J3D 3D-Balaban index 

RNCG relative negative charge 

TIC2 total information content index (neighborhood symmetry of 2-order) 

SEigZ the eigenvalue sum from Z weighted distance matrix 

X5Av average valence connectivity index chi-5 (linear and non-linear) 
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X2V valence connectivity index chi-2 

ISIZ information index on molecular size 

IVDM mean information content vertex degree magnitude 

H3D 3D-Harary index 

PCWTe partial-charge weighted topological electronic 

VEA2 average eigenvector coefficient sum from adjacency matrix 

GNar Narumi geometric topological index 

RPCG relative positive charge 

DECC eccentric 

FDI folding degree index 
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Table 3. The results of different QSAR models with different type of dependent variables for SERT. 

Model 

Eq.

no. 

MLR Equation n1 R2
c Q2 Rmscv Cvcv F SE R2 

p 

MLR 
1 

pIC50 = 2.165 nNHR(±0.298) – 1.15 nCIC 

(±0.291) -0.321 nHDon(±0.092) +0.574 x3sol 

(±0.0119) -0.192RBN (±0.069)-0.04D/Dr10 

(±0.02) + 7.55 (±1.18) 

39 0.85 0.81 0.27 3.57 31.1 0.12 0.76 

FA-MLR 
2 

pIC50 = 2.039 nNHR(±0.26)+4.934 

Jhetp(±1.232)-25.079 Lp1(±4.694)-0.359 

nHDon (±0.114)+66.98 

MATS5m(±16.359)+0.158 DipY(±0.065)-

5.844 SPAM (±2.551) -3.353(±16.855) 

39 0.81 0.64 0.41 5.29 19.1 0.22 0.86 

PCRA 
3 

pIC50 = 0.126FAC1(±0.061) -0.380 FAC2 

(±0.059) + 0.251 FAC3 (±0.066) + 0.218 

FAC5 (±0.071) -0.147 FAC12 (±0.055) 

+7.806 (±0.064) 

39 0.58 0.49 0.48 6.27 15.6 0.20 0.58 

GA-PLS 
4 

pIC50 = -1.589 STN (±0.168) 44.28ATS4p 

(±7.00) -85.48 MATS6m (±15.22) +60.527 

MATS4m (±13.853) + 9.394 

MATS1e(±2.023) -2.246 J3D(±0. 491) -

15.628 RNCG (±7.399) +31.9033(±16.15) 

39 0.80 0.73 0.33 4.26 17.8 0.07 0.74 

1 Number of molecules of training set used to derive the QSAR models 

R2
c: Regression Coefficient for Calibration set 

Q2: Regression Coefficient for Leave One Out Cross Validation 

RMScv: Root Mean Square Error of cross validation 

Cvcv: cross validation of cross validation 

S.E: Standard Error 

R2p: Regression Coefficient for prediction set 
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Table 4. Correlation coefficient (R2) matrix for descriptors represented in multiple linear regression eqn 

1. 

 D/Dr10 nHDon X3sol nCIC RBN nNHR 

D/Dr10 1 -0.008 0.302 0.192 -0.210 0.070 

nHDon  1 -0.340 0.146 -0.335 0.122 

X3sol   1 0.288 0.232 -0.223 

nCIC    1 -0.064 -0.246 

RBN     1 -0.142 

nNHR      1 
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Table 5. Factor loadings of some significant descriptors after VARIMAX rotation (SERT). 

Descriptor F1 F2 F3 F5 F12 Communalities 

pIC50 0.612 0.593 0.212 -0.206 0.187 0.912 

Ref -0.181 0.928 0.153 -0.165 0.073 0.939 

ATS6V 0.212 0.350 0.741 -0.246 -0.015 0.993 

nCIC -0.046 0.311 0.132 -0.905 0.046 0.988 

VAR 0.017 0.918 0.091 0.050 -0.048 0.984 

IVDM 0.143 0.849 0.330 -0.104 0.044 0.956 

piID 0.032 0.366 0.323 -0.764 0.091 0.932 

PCWTe -0.021 0.340 -0.056 -0.069 0.877 0.956 

Jhetp 0.137 -0.030 0.476 0.694 -0.062 0.970 

VEA2 -0.291 -0.898 0.015 0.026 -0.061 0.979 

RNCG -0.057 -0.188 0.095 0.086 -0.929 0.965 

qneg -0.103 -0.019 0.001 0.084 -0.681 0.983 

nHDon 0.012 -0.500 0.075 -0.016 -0.081 0.981 

nHAcc 0.819 -0.110 -0.411 0.048 -0.036 0.940 

RBN -0.006 0.051 -0.036 0.046 0.000 0.894 

D/Dr10 -0.059 0.058 0.257 -0.768 0.075 0.871 

Lp1 0.039 0.028 -0.007 -0.012 0.006 0.939 

G(F ..F) 0.820 0.001 -0.018 0.001 0.005 0.919 

MATS5m 0.463 0.489 0.125 0.053 -0.007 0.952 

DipY -0.219 -0.639 0.337 0.136 0.187 0.967 

ATS4p -0.268 0.151 0.706 -0.223 -0.081 0.929 

MATS4m 0.689 -0.060 0.241 0.029 0.048 0.955 

MATS1e 0.035 -0.079 -0.336 0.037 -0.067 0.943 

J3D -0.180 0.142 -0.149 0.624 0.046 0.910 

MATS6m 0.574 0.117 -0.026 0.258 0.143 0.987 

GATS1m -0.390 0.118 -0.105 -0.016 -0.023 0.979 

GATS2m -0.897 0.040 -0.117 0.011 -0.029 0.963 

GATS4m -0.895 0.117 -0.012 0.076 -0.093 0.954 

ATS7e 0.919 -0.094 0.037 0.138 -0.027 0.981 

X2v -0.110 0.888 0.227 -0.155 0.070 0.918 

ATS3v 0.282 0.343 0.793 -0.158 0.059 0.976 

ATS1v 0.172 0.264 0.839 0.084 -0.017 0.945 

nNHR 0.181 -0.797 0.182 -0.104 -0.160 0.983 

 


